7 research outputs found

    Oxidative stress and immunologic responses following a dietary exposure to PAHs in Mya arenaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this research was to investigate oxidative stress and immune responses following a dietary polycyclic aromatic hydrocarbon (PAH) exposure in a marine bioindicator organism, the soft shell clam, <it>Mya arenaria</it>. Immune parameters in hemolymph (haemocyte number, efficiency of phagocytosis and haemocyte activity) and assessment of oxidative stress using catalase (CAT) activity and levels of malondialdehyde (MDA) performed on the digestive gland were estimated as biomarkers in clams fed in mesocosm with PAH contaminated phytoplankton. MDA levels and CAT activities were also measured <it>in situ </it>in organisms sampled in a control site (Metis Beach, Québec, Canada) as well as organisms sampled in a site receiving domestic effluents (Pointe-au-Père, Québec, Canada), to assess effects of abiotic variables related to seasonal variations and mixed contamination on the selected parameters.</p> <p>Results</p> <p>Results on immune parameters suggest that the PAHs may interfere with the maturation and/or differentiation processes of haemocytes. MDA results showed that lipid peroxidation did not occur following the exposure. The levels of CAT activity corresponded to weak antioxidant activity (no significant differences). Recovery was noted for all the immune endpoints at the end of the experiment.</p> <p>Conclusion</p> <p>Results suggest that immune parameters are early biomarkers that can efficiently detect a physiological change during a short term exposure to low concentrations of PAHs. The <it>in situ </it>survey (in the natural environment) suggested that clams from the Pointe-au-Père site did not show any oxidative stress as well as the clams contaminated in mesocosm, probably due to the low concentrations of PAHs used for this study. MDA levels increased however in organisms from Metis Beach, a response probably related to domestic effluents or parasitism.</p

    Auswahl von theoriebezogenen Veröffentlichungen

    No full text

    PHOS Technical Design Report

    No full text

    ALICE: Physics Performance Report, Volume II

    No full text
    ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently involves more than 900 physicists and senior engineers, from both the nuclear and high-energy physics sectors, from over 90 institutions in about 30 countries. The ALICE detector is designed to cope with the highest particle multiplicities above those anticipated for Pb-Pb collisions (dN(ch)/dy up to 8000) and it will be operational at the start-up of the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of lower-mass ions, which are a means of varying the energy density, and protons (both pp and pA), which primarily provide reference data for the nucleus-nucleus collisions. In addition, the pp data will allow for a number of genuine pp physics studies. The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2004. The experiment is currently under construction and will be ready for data taking with both proton and heavy-ion beams at the start-up of the LHC. Since the comprehensive information on detector and physics performance was last published in the ALICE Technical Proposal in 1996, the detector, as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) provides an updated and comprehensive summary of the performance of the various ALICE subsystems, including updates to the Technical Design Reports, as appropriate. The PPR is divided into two volumes. Volume I, published in 2004 (CERN/LHCC 2003-049, ALICE Collaboration 2004 J. Phys. G: Nucl. Part. Phys. 30 1517-1763), contains in four chapters a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE, the experimental conditions at the LHC, a short summary and update of the subsystem designs, and a description of the offline framework and Monte Carlo event generators. The present volume, Volume II, contains the majority of the information relevant to the physics performance in proton-proton, proton-nucleus, and nucleus-nucleus collisions. Following an introductory overview, Chapter 5 describes the combined detector performance and the event reconstruction procedures, based on detailed simulations of the individual subsystems. Chapter 6 describes the analysis and physics reach for a representative sample of physics observables, from global event characteristics to hard processes
    corecore